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Abstract

N-Hydroxypyrrolidine 5 has been prepared in nine steps starting from 3-O-benzylglyceraldehyde 13. The
synthetic route employs Escherichia coli transketolase mediated C±C bond synthesis to establish the absolute
stereochemistry and a subsequent ring contraction of a 1,2-oxazine 17 to provide the N-hydroxypyrrolidine
nucleus. # 2000 Elsevier Science Ltd. All rights reserved.
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The class of compounds known as 1,1-dideoxyiminoalditols, in which the ring oxygen atom of
a sugar is replaced by NH, have proven to be potent inhibitors of a wide range of glycosidases.
For example, deoxynojirimycin 1 is a powerful inhibitor of a-glucosidases.1 The mechanistic basis
for the inhibition is believed to be due to a combination of the structural similarity between 1 and
d-glucosides 2, and also the ability to mimic the oxonium ion intermediate 3 by protonation on
the nitrogen atom.

Many types of imino sugars have been reported in the past few years, each with a di�erent
spectrum of activity against a range of glycosidases. Recently the synthesis of some O-alkylated
N-hydroxypiperidines 4was described and the compounds shown to be active against glycosidases.2
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Herein we describe the ®rst synthesis of an N-hydroxypyrrolidine 5 which has the same peripheral
stereochemistry found in d-glucose.

The synthesis of 5 arose out of an attempt to prepare the related imino sugar nectrisine 6. Our
initial planned route to 6 is shown in Scheme 1. Transketolase mediated condensation of (þ)-3,3-
diethoxy-2-hydroxypropanal 73 with hydroxypyruvate 8 a�orded the triol 9 in 56% yield (based
on the reactive enantiomer) which was silylated using TBSOTf and Et3N (74%) followed by
treatment with hydroxylamine hydrochloride and KHCO3 in methanol to give the oxime 10 in
82% yield. Reduction of oxime 10 using Raney1 nickel proved capricious giving yields of the
diastereomeric mixture of amines 11 of up to 65%. The unreliability of the oxime reduction
inevitably presented a major obstacle to the successful synthesis of nectrisine, and severely limited
the availability of material for subsequent studies. The mixture of diastereomeric amines 11 was
readily cyclised (97%) by treatment with iodotrimethylsilane in anhydrous CH2Cl2 to give a 3:2
mixture of cyclic imines from which the major diastereomer 12, bearing the stereochemistry found
in nectrisine 6, was isolated. Unfortunately, treatment of protected imine 12 under a range of
desilylation conditions (e.g. TBAF; AcOH/H2O/THF; ¯uoride resin; HF/acetonitrile) failed to
yield a pure sample of nectrisine.

In view of the problems with the oxime reduction step we turned our attention to an alternative
route that began with transketolase mediated coupling of (þ)-3-O-benzylglyceraldehyde 13 with
hydroxypyruvate yielding 5-O-benzyl-d-xylulose 144 in 80% yield on a 2±3 g scale (Scheme 2).
Triol 14 was converted to silylated oxime 15 by a sequence of silylation (TBSOTf, Et3N, 83%
yield), oxime formation (hydroxylamine hydrochloride, KHCO3, 71% yield, 2:1 mixture of
(E)-and (Z)-geometric isomers) and ®nally treatment with TBSOTf and Et3N (95% yield).
Debenzylation of oxime ether 15 proved surprisingly problematic. The most e�ective catalyst
proved to be 10% palladium-charcoal which resulted in complete debenzylation of 15 within 24 h
under an atmosphere of H2, though appreciable amounts of catalyst (40±50 weight%) were found to
be necessary to obtain a rapid, e�cient conversion. The alcohol product was isolated by ®ltration

Scheme 1. Reagents: (i) transketolase, TPP, Mg2+, pH 7.0 (pH stat); (ii) TBSOTf, Et3N; (iii) NH2OH.HCl, KHCO3;
(iv) H2/Raney Ni; (v) TMSI; (vi) SiO2 chromatography
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of the reaction mixture through Celite1 and found to be >90% pure by 1H and 13C NMR analysis
(1HNMR suggesting an 1:1 mixture of double bond isomers), and was isolated in near-quantitative
yield as a clear or yellow oil which slightly solidi®ed after prolonged evacuation on a high-vacuum
line. Oxidation of the alcohol was accomplished either under Swern conditions (40±60%) or by
using NaOCl and TEMPO (cat.) in a two-phase reaction mixture (66%) to give aldehyde 16.

The aldehyde 16 was then treated with triethyl orthoformate and p-toluenesulfonic acid (cat.)
in EtOH with the intention of preparing the corresponding diethyl acetal although the reaction
resulted in the unexpected formation of the oxazine 17. Assignment of the 1,2-oxazine structure
17 was made on the basis of the following evidence. 1H NMR integrals were consistent with the
presence of three TBS groups and a single ethoxy group per molecule; a molecular ion of m/z 534
[MH+] consistent with the molecular formula C25H55NO5Si3 was observed in the CI mass spec-
trum; furthermore a C�N stretch at �max 1585 cm^1 (comparable to that reported for the C�N
stretches of a range of unsaturated 1,2-oxazines5) was observed, implying that addition or other
reaction across the oxime double bond had not taken place.6

Reduction of 1,2-oxazines using hydrogenation over Raney1 nickel7 had been shown to yield
highly-substituted ®ve-membered heterocycles (proline analogues), useful in the synthesis of
ACE inhibitors. Treatment of 1,2-oxazine 17 under analogous conditions yielded the trisilylated
derivatives 19 as a mixture of diastereomers (2:1) in 59% overall yield. Of potentially greater
interest, however, were reductive processes which did not cleave the N±O bond, and consequently
left the oxazine ring structure intact. The reduction of the C�N bond of 6-silyloxy-and 6-alkoxy-
1,2-oxazines with sodium cyanoborohydride in acetic acid has been reported to proceed without
cleavage of the N±O bond.8 Reduction of 1,2-oxazine 17 with sodium cyanoborohydride in acetic
acid yielded the N-hydroxypyrrolidine 18 as a single diastereoisomer and crystalline solid (37%).
The X-ray structure of 18 (R-factor of 18%) showed unambiguously that a ring contraction had
occurred and that the product contained a ®ve-membered ring. The stereochemistry at the new
chiral centre in the product was clearly shown to be (R), with all substituents adopting a pseudo-
equatorial arrangement about the ®ve-membered ring (Fig. 1).

Scheme 2. Reagents: (i) transketolase, TPP, Mg2+, pH 7.0 (pH stat); (ii) TBSOTf, Et3N; (iii) NH2OH.HCl, KHCO3

(iv) TBSOTf, Et3N (v) H2/Pd; (vi) NaOCl, TEMPO or Swern; (vii) (EtO)3CH, pTsOH; (viii) NaCNBH3; (ix) H2/Pd (x)
HF
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Ring contractions of 1,2-oxazines upon treatment with NaBH3CN have not previously been
reported. However similar processes have been observed under acidic conditions9 yielding
nitrones or pyridine N-oxides, depending on the nature of the substituent at C-6 of the oxazine,
and in the reduction of 6-silyloxy-1,2-oxazines under aprotic conditions using DIBAL-H to yield
N-hydroxypyrrolidines.10

Finally desilylation of 18 was achieved by treatment with aqueous HF in 1:1 acetonitrile/THF
which yielded the fully desilylated product 5 in quantitative yield.11 Evaluation of the activity of 5
as a glycosidase inhibitor is currently in progress.
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